{"status":"ok","elements":"
\n
\n \n \t\t
\n Decreasing Hydroxylation Affinity of La(1-x)SrxMnO3 Perovskites to Promote Oxygen Reduction Electrocatalysis<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Creating Nanoscale Emulsions Using Condensation<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Crystallization-Induced Fouling during Boiling: Formation Mechanisms to Mitigation Approaches<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Self-Peeling of Impacting Droplets<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Kinetics of Photoinduced Wettability Switching on Nanoporous Titania Surfaces under Oil<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Visible Light Guided Manipulation of Liquid Wettability on Photoresponsive Surfaces<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Designing Ultra-Low Hydrate Adhesion Surfaces by Interfacial Spreading of Water-Immiscible Barrier Films<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Lubricant-Impregnated Surfaces, Chapter from the Book “Non-wettable Surfaces : Theory, Preparation and Applications”<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Thermocapillary Motion on Lubricant-Impregnated Surfaces<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Enhancing droplet deposition through in-situ precipitation<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Solvent-induced crystallization of a polycarbonate surface and texture copying by polydimethylsiloxane for improved surface hydrophobicity<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>
\n
\n \n \t\t
\n Surface and wetting characteristics of textured bisphenol-A based polycarbonate surfaces: Acetone-induced crystallization texturing methods<\/a>\n <\/div>\n\t\t\t\t\t
\n \"\"<\/a>\n <\/div>\n \n\t\t \n\n \n\t\t
\n More<\/a>\n <\/div> \n <\/div>\n \n<\/div>